Adhesive Proteins of Stalked and Acorn Barnacles Display Homology with Low Sequence Similarities
نویسندگان
چکیده
Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins 'sticky' has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7-16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18-26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa).
منابع مشابه
First evidence for temporary and permanent adhesive systems in the stalked barnacle cyprid, Octolasmis angulata
Although there have been extensive studies on the larval adhesion of acorn barnacles over the past few decades, little is known about stalked barnacles. For the first time, we describe the larval adhesive systems in the stalked barnacle, Octolasmis angulata and the findings differ from previous reports of the temporary (antennulary) and cement glands in thoracican barnacles. We have found that ...
متن کاملSequence basis of Barnacle Cement Nanostructure is Defined by Proteins with Silk Homology
Barnacles adhere by producing a mixture of cement proteins (CPs) that organize into a permanently bonded layer displayed as nanoscale fibers. These cement proteins share no homology with any other marine adhesives, and a common sequence-basis that defines how nanostructures function as adhesives remains undiscovered. Here we demonstrate that a significant unidentified portion of acorn barnacle ...
متن کاملMechanical properties of the cement of the stalked barnacle Dosima fascicularis (Cirripedia, Crustacea)
The stalked barnacle Dosima fascicularis secretes foam-like cement, the amount of which usually exceeds that produced by other barnacles. When Dosima settles on small objects, this adhesive is additionally used as a float which gives buoyancy to the animal. The dual use of the cement by D. fascicularis requires mechanical properties different from those of other barnacle species. In the float, ...
متن کاملCloning and expression of Eimeria necatrix microneme5 gene in Escherichia coli
Background: Coccidiosis caused by Eimeria necatrix has the most economic impact onpoultry production. Micronemal proteins in Eimeria necatrix are thoughtto be critical ligands determining host cell specificity at the time ofinvasion. OBJECTIVES: Isolation and purification of Eimeria necatrix oocysts from Khuzestan province of Iran was performed. AcDNA encoding microneme 5 (EnMIC5...
متن کاملUnderwater adhesion: the barnacle way
Barnacle cement is an underwater adhesive insoluble protein complex. Marine proteins secreted by the invertebrates such as barnacles and mussels have potential application as powerful adhesives as they insolubilize and adhere to variety of substrates in aqueous environment. The adhesive properties of the barnacle adhesive proteins have been utilized for various dental and medical purposes. Thes...
متن کامل